Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells.

نویسندگان

  • Hiroyasu Inoue
  • Yoji Taba
  • Yoshikazu Miwa
  • Chiaki Yokota
  • Megumi Miyagi
  • Toshiyuki Sasaguri
چکیده

OBJECTIVE Fluid shear stress induces cyclooxygenase (COX)-2 gene expression in vascular endothelial cells. We investigated the underlying mechanism of this induction. METHODS AND RESULTS Exposure of human umbilical vein endothelial cells to laminar shear stress in the physiological range (1 to 30 dyne/cm2) upregulated the expression of COX-2 but not COX-1, a constitutive isozyme of COX. The expression of COX-2 mRNA began to increase within 0.5 hour after the loading of shear stress and reached a maximal level at 4 hours. Roles of the promoter region and the 3'-untranslated region in the human COX-2 gene were evaluated by the transient transfection of luciferase reporter vectors into bovine arterial endothelial cells. Shear stress elevated luciferase activity via the region between -327 and 59 bp. Mutation analysis indicated that cAMP-responsive element (-59/-53 bp) was mainly involved in this response. On the other hand, shear stress selectively stabilized COX-2 mRNA. Moreover, shear stress elevated luciferase activity when a 3'-untranslated region of COX-2 gene containing 17 copies of the AUUUA mRNA instability motif was inserted into the vector. CONCLUSIONS Transcriptional activation and posttranscriptional mRNA stabilization contribute to the rapid and sustained expression of COX-2 in response to shear stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression.

The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to m...

متن کامل

Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells.

The interaction between the vascular endothelium and hemodynamic forces (and more specifically, fluid shear stress), induced by the flow of blood, plays a major role in vascular remodeling and in new blood vessels formation via a process termed arteriogenesis. Tie1 is an orphan tyrosine kinase receptor expressed almost exclusively in endothelial cells and is required for normal vascular develop...

متن کامل

Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress.

Early atherosclerotic lesions develop in a topographical pattern that strongly suggests involvement of hemodynamic forces in their pathogenesis. We hypothesized that certain endothelial genes, which exhibit differential responsiveness to distinct fluid mechanical stimuli, may participate in the atherogenic process by modulating, on a local level within the arterial wall, the effects of systemic...

متن کامل

Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms.

OBJECTIVE The goal of this study was to examine the effect of chronic heterogeneous shear stress, applied using an orbital shaker, on endothelial cell morphology and the expression of cyclooxygenases 1 and 2. METHODS AND RESULTS Porcine aortic endothelial cells were plated on fibronectin-coated Transwell plates. Cells were cultured for up to 7 days either under static conditions or on an orbi...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2002